Small indels induced by CRISPR/Cas9 in the 5′ region of microRNA lead to its depletion and Drosha processing retardance
نویسندگان
چکیده
MicroRNA knockout by genome editing technologies is promising. In order to extend the application of the technology and to investigate the function of a specific miRNA, we used CRISPR/Cas9 to deplete human miR-93 from a cluster by targeting its 5' region in HeLa cells. Various small indels were induced in the targeted region containing the Drosha processing site and seed sequences. Interestingly, we found that even a single nucleotide deletion led to complete knockout of the target miRNA with high specificity. Functional knockout was confirmed by phenotype analysis. Furthermore, de novo microRNAs were not found by RNA-seq. Nevertheless, expression of the pri-microRNAs was increased. When combined with structural analysis, the data indicated that biogenesis was impaired. Altogether, we showed that small indels in the 5' region of a microRNA result in sequence depletion as well as Drosha processing retard.
منابع مشابه
Efficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9
Background: Recombination Activating Genes (RAG) mutated embryonic stem cells are (ES) cells which are unable to perform V (D) J recombination. These cells can be used for generation of immunodeficient mouse. Creating biallelic mutations by CRISPR/Cas9 genome editing has emerged as a powerful technique to generate site-specific mutations in different sequences. Ob...
متن کاملHeritable Genomic Fragment Deletions and Small Indels in the Putative ENGase Gene Induced by CRISPR/Cas9 in Barley
Targeted genome editing with the CRISPR/Cas9 system has been used extensively for the selective mutation of plant genes. Here we used CRISPR/Cas9 to disrupt the putative barley (Hordeum vulgare cv. "Golden Promise") endo-N-acetyl-β-D-glucosaminidase (ENGase) gene. Five single guide RNAs (sgRNAs) were designed for different target sites in the upstream part of the ENGase coding region. Targeted ...
متن کاملCRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo
MicroRNAs are small and non-coding RNA molecules with the master role in regulation of gene expression at post-transcriptional/translational levels. Many methods have been developed for microRNA loss-of-function study, such as antisense inhibitors and sponges; however, the robustness, specificity, and stability of these traditional strategies are not highly satisfied. CRISPR/cas9 system is emer...
متن کاملDeveloping oncolytic Herpes simplex virus type 1 through UL39 knockout by CRISPR-Cas9
Objective(s): Oncolytic Herpes simplex virus type 1 (HSV-1) has emerged as a promising strategy for cancer therapy. However, development of novel oncolytic mutants has remained a major challenge owing to low efficiency of conventional genome editing methods. Recently, CRISPR-Cas9 has revolutionized genome editing.Materials and Methods: I...
متن کاملGeneration of global Spata19 knockout mouse using CRISPR/Cas9 nickase technology
Introduction: SPATA19 gene is expressed in developmental stages of testis and some organs, but so far its function has only been examined in the testis. In this study, we provided an effective pathway for the generation of these mice using new CRISPR / Cas9 nickase method while generating Spata19 knockout mice for future studies in other organs. Materials and Methods: CRISPR / Cas9 nickase plas...
متن کامل